Association of plasma metabolomic compounds with the incidence of cardiovascular endpoints in the Hortega Follow-Up Study

^{*1,2}Zulema Rodriguez-Hernandez, ³Pilar Casanovas, ¹Marta Galvez-Fernandez, ^{3,4}Vannina Gonzalez-Marrachelli, ⁵Arce Domingo-Relloso, ³Maria Grau-Perez, ⁶Laisa Briongos-Figuero, ^{*6}Juan C. Martin-Escudero, ^{*1}Maria Tellez-Plaza, ^{*3}Josep Redon, ^{*3,7}Daniel Monleon

* Equal author contribution, ¹Integrative Epidemiology Group, National Center for Epidemiology, ISCII, Madrid, Spain; ²Universitat Politècnica de València, Valencia; ³INCLIVA Biomedical Research Institute, Valencia, Spain; ⁴Department of Physiology, University of Valencia, Spain; ⁵Department of Environmental Health Sciences, Columbia University, New York, US; ⁶Department of Internal Medicine, Hospital Universitario Rio Hortega, Valladolid, Spain; ⁷Department of Pathology, University of Valencia, Spain

Introduction: The association of metabolic compounds with the incidence of specific cardiovascular (CV) endpoints including coronary heart disease (CHD), stroke and heart failure (HF) has rarely been studied in general population settings. Therefore, we evaluated the prospective association of metabolic compounds with incidence of CHD, stroke and HF in the Hortega study, a representative sample of a general population from Spain.

Methods: Metabolites were measured by NMR in 1016 adults of the Hortega Follow-up Study (15 years of follow-up) without clinical CV diseases at baseline. We estimated hazard ratios (HR) and 95% confidence intervals (CI) of stroke, CHD and HF incidence by plasma metabolites levels (log-transformed) using Cox proportional hazards regression. Models were adjusted for sex, education, smoking status, cumulative tobacco smoking (pack-year), urine cotinine, glomerular filtration rate, physical activity, HDL cholesterol, total cholesterol, lipid lowering and blood pressure medication, type 2- diabetes mellitus and systolic blood pressure.

Results: The number of newly diagnosed cases were 67 for stroke over 13,184 person-years (incidence of 5.1 per 1,000 person-years); 52 for CHD over 12,908.5 person-years (incidence of 4 per 1,000 person-years) and 75 for HF over 13,336.3 person-years (incidence of 5.6 per 1,000 person-years). We observed statistically significant associations [HR (95% CI), comparing the 80th to the 20th percentiles of metabolites distributions] for creatinine phosphate [1.94 (1.18, 3.20)], tryptophan [3.25 (1.48, 7.15)], tyrosine [1.98 (1.18, 3.32)] and O-phosphoethanolamine [2.09 (1.25, 3.50)], among others, with incident heart stroke; cysteine [2.12 (1.23, 3.68)], isopropanol [2.25 (1.20, 4.21)], citrate [2.20 (1.20, 4.01)] and phenylpropionate [2.45 (1.13, 5.31)], among others, with incident CHD; and some fatty acids subclasses as CH_2CH_2CO [0.56 (0.32, 0.97) and CH_2N [0.44 (0.22, 0.88)], acetone [0.45 (0.22, 0.93)] and lactate [0.53 (0.28, 0.99)] with incident HF.

Conclusions: Metabolic patters reflecting amino acids, fatty acids, microbiota co-metabolism and energy-related compounds were prospectively associated with specific CV endpoints in the general population from Spain, which may be relevant for CV diseases prevention and diagnosis. Additional studies for reproduction of our findings are needed.

Keywords: metabolomics, metabolites, cardiovascular disease