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Abstract

Interval-censored covariates have been appearing in clinical studies lately, but the lack of method-
ological content has not allowed researchers to analyse such data properly. We introduce the GEL
technique for generalized linear models, and develop novel work on model checking. The proposed
methodology is illustrated with data from metabolomics research area.
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1. Introduction
Interval-censoring is typically encountered in the analysis of time-to-event data, and so statistical

methods to analyse such data have been extensively studied; see, for example, Gómez et al (2009) for a
thorough review [1]. On the contrary, scientific literature on regression models with an interval-censored
covariate is rather scarce.

The GEL technique was first introduced in Gómez et al (2003) to estimate the regression param-
eters of a simple linear model where the independent variable is an interval-censored time [2]. Langohr
et al (2014) revisited it and provided an implementation in R of the algorithm [3]. More recently, Mor-
rison et al (2022) adapted the GEL technique to accommodate left-truncated interval-censored data, and
Gómez et al (2022) rewrote the algorithm for generalized linear models [4, 5].

The definition of residuals has been even less explored than model estimation itself. Concerning
linear regression, Langohr et al (2014) offer an exhaustive discussion of residuals in presence of interval-
censoring [3]. The aim of this work is hence to propose a residual analysis procedure that accounts for
interval-censoring, and address its suitability to check the model’s goodness of fit.

2. Motivating data
The development of the methodology presented is motivated by metabolic data from 104 female

participants of the PREDIMED-Plus trial. Clinical interest was on association of plasma carotenoid con-
centrations and cardiovascular risk factors [5]. Briefly, carotenoids are a family of eight phytochemical
compounds produced by plants that are thought to be responsible for the health benefits fruits and veg-
etables provide, and are present in human blood acquired through diet. In order to study the global action
of carotenoids as a whole, the sum of plasma concentrations was a relevant biomarker.



The plasma concentration of a carotenoid is measured in the laboratory by a technique called high-
performance liquid chromatography. This technique is able to identify, extract and quantify the molecules
of the compound, but it fails when concentrations are too low, so a mass spectrometry detection method is
usually employed to obtain narrower intervals for the measure. Consequently, the data of a single plasma
carotenoid determination depends on a limit of detection (LoD) and a limit of quantification (LoQ), in
such a way that the value is exactly known over the LoQ, interval-censored between LoQ and LoD,
and left-censored below LoD. These limits are compound-specific, so the sum of plasma concentrations
gives rise to an interval-censored variable where the limits appear blurred, hence the resulting observed
intervals are overlapping. This feature is an advantage over single determinations, for which very little
information can be drawn under the limit of quantification.

3. Model formulation
For each carotenoid compound Cj , let CLj , CRj be two random variables denoting the observ-

able intervals [CLj , CRj ], which correspond to the potential observations [0, LoDj), [LoDj , LoQj), and
[Cj , Cj ]. Note the observable intervals can be assumed closed because any quantification method has a
limited decimal precision. The sum of carotenoids is denoted by Z, and the corresponding observable
random variables are defined by ZL =

∑8
j=1CLj and ZR =

∑8
j=1CRj . Hence, Z is an interval-

censored variable, and the censoring interval [ZL, ZR] verifies the non-informative conditions particular
of this type of censoring. Figure 1 illustrates the observed data for one of the carotenoids, and for the
sum of all of them. Additionally, let Y be a random variable from the exponential family denoting the
response variable, and X a p-dimensional vector of fully-observed covariates.

Generalized linear models are an extension of classical linear models that aim to fit regression
models with response variables whose distribution cannot be approximated by a normal random variable.
These models relate the expected mean response µ = E[Y | X,Z] with the linear predictor η = α +
β′X + γZ through a monotonic differentiable link function g, that is g(µ) = η. Many of the properties
they possess arise from assuming that the probability density function of Y , in terms of η, pertains to the
θ-parameter exponential family with shape

f(y; θ, ϕ) = exp
{yθ − b(θ)

a(ϕ)
+ c(y;ϕ)

}
,

where ϕ is known as dispersion parameter, and θ is a function of the mean µ = g−1(η). For instance, an
expression can be found for the variance of Y , Var(Y ) = a(ϕ)b̈(θ), which implies that it is not constant
with respect to the mean µ; and the variance function V (µ) is defined so that Var(Y ) = a(ϕ)V (µ).

4. Parameter estimation
The GEL (Gómez - Espinal - Lagakos) technique is a parameter estimation method based on maxi-

mizing the log-likelihood function through an EM-type algorithm that contemplates an interval-censored
covariate. It assumes the interval-censored covariate Z is discrete with support S = {s1, s2, . . . , sm}
and probability law wj := P (Z = sj) for j = 1, . . . ,m, yet no additional distributional restrictions are
made.

Non-informative conditions are assumed in the sense that ZL, ZR provide no additional informa-



tion about Z than being inside the interval, and that Y depends on ZL, ZR only through Z. These are
standard requirements for interval-censored data, and can be found for instance in Gómez et al (2009) [1].

Given n independent realizations of (Y,X,ZL, ZR), denote by (yi, xi, zLi, zRi) the observed data
of the ith individual. Non-informative conditions make it possible to ignore the distribution function of
ZL, ZR from the log-likelihood maximization, since the likelihood function becomes proportional to

L(θ, ϕ, w) ∝
n∏

i=1

m∑
j=1

κij f(yi | Z = sj , X = xi; θ, ϕ) wj , (1)

where κij = 1{sj ∈ [zLi, zRi]} indicates whether the support point sj is included in the observed
interval of the ith individual, and w = (w1, . . . , wm) is a parameter vector enclosing the probabilities
of Z in S. In order to estimate α, β, γ in presence of the nuisance parameter w, an iterative two-step
algorithm is proposed:

1. Consider θ = θ(µi) fixed, and solve the following self-consistent equations for w.

wj =
1

n

n∑
i=1

κijf(yi | Z = sj , X = xi; θ)wj∑m
k=1 κikf(yi | Z = sk, X = xi; θ)wk

, j = 1, . . . ,m

2. Given an estimate for w, the log-likelihood is maximized with respect to regression parameters
α, β, γ. Notice that (1) does not correspond to the particular likelihood of generalized linear mod-
els, so standard tools such as iterative reweighted least squares or Fisher scoring algorithm are not
applicable, and generic numerical algorithms for maximization shall be used instead.

5. Residual analysis
After model fitting it is indispensable to check the adequacy of the selected model to the data, since

misspecification may invalidate findings and predictions. Common sources of model misspecification
include a bad choice of link function g, a wrong assumption of the mean-variance relationship induced
by the variance function V (µ), a wrong pre-specified dispersion ϕ, the possible omission of non-linear
effects from covariates, and the presence of unusual response observations that might influence parameter
estimation.

Diagnostic plots of residuals can reveal and help to identify these problems. For instance, plotting
residuals against fitted values to seek patterns provides a first glimpse of systematic inconsistencies in
the model, whereas non-linear effects can be checked with component-plus-residual plots, which show
numeric covariates against its partial residuals. In addition, goodness-of-fit tests computed from residuals
offer a valuable overview of model suitability.

It is well known that Pearson and deviance residuals, together with their standardized form, are the
most employed in generalized linear models. Briefly, the former are defined as rP,i = (yi−µ̂i)/

√
V (µ̂i),

and arise from the Pearson’s χ2 statistic. Conversely, deviance residuals rd,i = sign(yi − µ̂i)
√
di are

defined so that D =
∑

i di, where D = 2ϕ{l(y) − l(µ̂)} is the deviance of the model. Unfortunately,
both residuals rely on exact values of covariates, so are not totally suited for interval-censored data.



In this work we propose a residual analysis procedure based on the pseudo-observations estimating
method originally conceived for incomplete data [6]. It will be compared with the alternative approach
of computing the expected residuals r̂P,i = EZ [rP,i | zLi, zRi], r̂d,i = EZ [rd,i | zLi, zRi] under the
Turnbull’s non-parametric estimator of P (Z = sj).
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Figure 1: Ordered observed data from 104 female participants of a study on the association of circulat-
ing carotenoids and cardiovascular risk factors. Lines represent interval-censored observations, points
exactly quantified determinations.
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