Spatio-temporal models including time-varying shared space-time
interactions to analyze rare cancer sites
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Abstract

Rare cancers are usually excluded from general analysis as data scarcity leads to imprecise esti-
mates when using standard methods. In this work we propose the use of multivariate spatio-temporal
models with different shared interaction terms to analyze jointly incidence and mortality. Results
show that for rare cancer sites, multivariate spatio-temporal models with shared interaction perform
better than the usual multivariate spatio-temporal models with independent interactions.
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1. Introduction

Disease mapping has a long history in epidemiology and public health. It helps to visualise the ge-
ographical distribution of a disease, to monitor changes in disease incidence or prevalence over time, and
to evaluate the effectiveness of public health interventions. It can also be used to identify potential risk
factors affecting the disease and to help public health authorities plan resource allocation and identify
areas for priority action. This is important because the global cost of diseases such as cancer has a major
impact on health budgets and society. For a correct allocation of health resources aimed at cancer preven-
tion and control, different indicators such as cancer incidence and mortality rates are usually calculated.
However, most of the literature provides incidence and mortality estimates for total cancer or for the most
common cancer locations, such as breast or lung cancer. Less common cancers, such as brain or pan-
creatic cancer, are usually excluded as data scarcity leads to imprecise estimates when standard methods
such as univariate spatio-temporal models are used. Therefore, estimating rare or less common cancers
becomes a methodological challenge. One approach to overcome this drawback is to use multivariate
spatio-temporal models to jointly analyze disease incidence and mortality, sharing information and ob-
taining better estimates. When using shared multivariate spatio-temporal models researchers usually
consider independent spatio-temporal interactions. However, we believe that when the health outcomes
of interest have low rates, sharing interactions could improve estimates as the amount of information
shared is greater. Therefore, in this work we propose the use of multivariate spatio-temporal models with



shared interaction terms. Our proposal arises by combining ideas from the well-known shared compo-
nent models [1] and considering the four types of spatio-temporal interactions defined by Knorr-Held
[2]. In particular, we define spatio-temporal models that include interactions with a time-varying scaling
parameter. To illustrate the new models, we analyze both pancreatic cancer and leukaemia incidence
and mortality for males in 142 small areas of Great Britain over nine biennial periods. Model fitting and
inference has been carried out with INLA.

2. Multivariate spatio-temporal models with time-varying shared interactions

Let O;tq, nitq and 74 be the observed number of cases, the population at risk and the rates in
eachareai, 7 =1,...,Aattimet,t = 1,...,T for d = I, incidence, and d = M, mortality. Then,
conditional on the rates r;;4, the number of observed incidence or mortality cases in each area and time,
Oid, are assumed to follow a Poisson distribution with mean pi;:q = n¢q7itd, 1.€.

Ourlrir  ~ Poisson(pier = nigrrir), log e = lognier + log ries,
Oirnmlriens  ~  Poisson(fitar = NatnTienr), log pitns = log nignr + log riens

To model the log rates, log r;;4, we propose two models with time-varying shared interactions.
We define Model 1 with a fixed effect for each health-outcome, a shared spatial component, a time effect,
and a shared component model for the interactions. In Model 2 we add a spatially unstructured random
effect for mortality. Namely

Model 1: logryr = oy 4+ dk; + Yer + 0t Xt Model 2: logrr = ay + 0k + Yer + 0eXits
1 1 1 1
log ritar = apr + gﬁi + Yenr + Q*Xm log ritar = s + gfii + Ui +vem + Q*Xm
t t

where oy is a health outcome-specific intercept, d is a scaling parameter, «; represents the shared spatial
component, u; is a spatially unstructured random effect, ;4 represents the time effect specific for each
health outcome d, g; is a scaling parameter for each time ¢ and x;; is the shared spatio-temporal interac-
tion. The o, scaling parameters do not need to be necessarily different for all times ¢, i.e., it is possible
to define a total number of parameters [ < 7" and repeat them for certain periods. If this is the case, one
defines
o = diagonal (911, 021y, .-, 011m,) @14 1 <I<T,

where g; are scaling parameters, m; is the number of years with the same scaling parameter g; and 1,
are identity matrices of size m; x m;. We assume that the g; scaling parameters are independent. The
following prior distributions are used

ag~ N(0,1/0.001), d=I,M p(u) x exp <_2Tuu/IAu> , p(x) x exp (_QTXX/QXx> ,
0 ~ Gamma(10, 10), p(7y) o exp (?7/R77> ,
p(K) o exp (;QK,/R,@K) , o1 ~ Gamma(10,10), 1<I<T

where R is the well-known spatial neighbourhood structure matrix, R is the temporal structure matrix
of a first order random walk and Q, represents any of the four spatio-temporal interaction types proposed
by Knorr-Held [2]. For comparison purposes, we also consider multivariate spatio-temporal models with
independent interactions, denoted by Model 0 and Model 0*. Namely

Model 0:  logrir = ar + dk; + Y1 + Xatr, Model 0% : log ry; = o + 0ki + Yer + Xitr,

1 1
log ritns = oo + gfii + Yem + XitM s log ritns = oo + glii + ui + Yenr + XitMs



where ;4 are the spatio-temporal interactions specific for each health outcome d.

We remark that the new shared spatio-temporal models presented here are not directly available in
INLA [3]. We have implemented them using the rgeneric model.

3. Illustration

In this work, we analyze jointly both pancreatic cancer and leukaemia incidence and mortality data
in males during nine periods (2002-2003, ..., 2018-2019) in 142 areas of Great Britain. For Model 1 and
Model 2, we use different number of scaling parameters. First, we select the two extreme cases, i.e. the
model with a single scaling parameter [ = 1 (the most restrictive model) and the model with a different
parameter for each time period [ = 7' (the most flexible model). Second, we select a specific number
of scaling parameters depending on the cancer location. To select the number of scaling parameters we
have performed an exploratory data analysis. Based on it, we take three different scaling parameters for
pancreatic cancer, repeating each of them over three periods, and we consider seven scaling parameters
for leukaemia, one for each period, except for the 5th and 6th period, and the 7th and 8th period where
we define the same scaling parameter. We also consider the four interaction types. Although not shown
here to conserve space, for pancreatic cancer type Il interactions have been selected for Model 0, and
type I interactions for Model 1 and Model 2, while for leukaemia, type I1I interactions have been selected
as the best for all models. We have used the Deviance Information Criterion (DIC) [4], the Watanabe-
Akaike Information Criterion (WAIC) [5] and the logarithmic score (LS) [6] criteria to select the best
model among the different proposals.

Table 1 shows the model selection criteria values obtained by the best models at each cancer loca-
tion. We can see that for pancreatic cancer Model 1 with a constant scaling parameter is the best model.
For leukaemia similar results have been obtained using Model 2 with a different scaling parameter for
each time period or with seven scaling parameters. After examining the values of the scaling parameters,
we have selected Model 2 with seven scaling parameters as the best model.

Figure 1 shows the posterior mean of the rate estimates with Model 1 and a scaling parameter
(I = 1) for pancreatic cancer incidence and mortality. To conserve space, we only present the time
evolution of the geographical patterns of pancreatic cancer rate estimates. We observe an increase in
pancreatic cancer incidence and mortality rates over the years. The increase in rates is first seen in the
southern coast areas and this increase is spreading northwards. In 2018-2019 the areas with the lowest
rates are located in central England.

Table 1: Model selection criteria.

Pancreatic cancer Leukaemia cancer
DIC WAIC LS DIC WAIC LS
Model 0 17070 17063 8545 Model 0* 17161 17164 8661

Modell I =1 16716 16523 8289 Model 2 =1 17098 17086 8619
Model1l =T 16791 16546 8298 Model2 =T 17086 17083 8610
Model1l =3 16719 16524 8290 Model2 1 =7 17088 17078 8609
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Figure 1: Temporal evolution of geographical patterns of pancreatic cancer rates with Model 1.

Conclusions

Estimating rare or less frequent cancer sites becomes a methodological challenge. We propose the

use of multivariate spatio-temporal models with time-varying shared interaction terms to maximize the
information coming from disease incidence and mortality. The results show that for rare cancer sites,
multivariate spatio-temporal models with shared interactions perform better than the usual multivariate
spatio-temporal models with independent interactions.
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