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Abstract

We propose a fully Bayesian joint quantile autoregression (QAR) modeling for time-series data.
We derive a characterization of the noncrossing QAR(1) model using two monotone curves. We offer
novel metrics to assess the adequacy of the QAR. Subsequently, we propose a novel spatial joint QAR
for spatially referenced time-series data. We illustrate the models with an analysis of persistence in
daily maximum temperature data collected in Aragón, Spain.
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1. Introduction
Quantile regression (QR) offers a flexible tool to capture changing explanation across quantile lev-

els between the response and the covariates. The usual approach is the so-called multiple QR [1, 2], fitting
a separate regression for each quantile of interest, leading to the possibility of crossing of the regression
across quantiles. The approach called joint QR [5] avoids quantile crossing over a restricted support for
the covariates. On the other hand, a seminal version of a joint quantile autoregression (QAR) model was
proposed by Koenker and Xiao [4] (KX2006, hereafter). They required all the coefficients of the autore-
gression to be comonotonic, this is, strictly increasing functions across quantile levels τ ∈ (0, 1). Our
contribution here is to reconsider the work by KX2006 in the context of Tokdar and Kadane [5] (TK2012,
hereafter) to propose novel joint QAR modeling in a Bayesian framework with greater flexibility than
KX2006. Going one step further, in the spatial setting, we introduce spatial dependence in the time-series
realizations but as well, we add spatially-varying coefficients in order to obtain spatially-varying QAR’s,
generalizing the spatial QR model by [3] in the sense that they capture spatial dependence through a
copula process but obtain a common quantile function that does not vary spatially.

2. Joint QAR model for time-series data
The support of the data. Let {y∗t : t = 1, . . . , T} be the time-series data. For a noncrossing QAR(1)
specification interest focuses on ensuring that the quantile curves do not cross for all values of y∗t−1 in
a bounded interval. Although the region of interest for noncrossing must be assumed to be bounded,



the variable space itself may still be unbounded. If noncrossing were desired in QAR on an unbounded
domain, the result will be parallel lines, yielding the constant autoregression model. We take this interval
to be [0, 1] and implement this by making a transformation of the data, yt = (y∗t −m)/(M −m), where
m < min y∗t and M > max y∗t . For a convenient “automatic” strategy for selecting m and M we use
basic results from the theory of order statistics where y∗(1) is the minimum and y∗(T ) is the maximum of
the data. We propose m = (Ty∗(1) − y∗(T ))/(T − 1) and M = (Ty∗(T ) − y∗(1))/(T − 1).

The model. A straightforward characterization of the required monotonicity of the QAR(1) lines is:

Theorem 1. An autoregressive specification, QYt(τ | yt−1) = θ0(τ) + θ1(τ)yt−1 with θ1(τ) ∈ [−1, 1]
for τ ∈ [0, 1], is monotonically increasing in τ for yt−1 ∈ [0, 1] if and only if QYt(τ | yt−1) = η2(τ) +
(η1(τ)− η2(τ))yt−1 where η1, η2 : [0, 1] → [0, 1] are monotonically increasing.

A model for functions η1 and η2 induces a QAR(1) model over all valid QAR(1) specifications
of QYt(τ | yt−1), provided the boundary conditions QYt(0 | yt−1) = 0 and QYt(1 | yt−1) = 1 for all
yt−1 ∈ [0, 1] are satisfied, or equivalently, ηj(0) = 0 and ηj(1) = 1 (j = 1, 2). A convenient class of
η’s to work with are cdf’s for continuous random variables with support [0, 1]. In fact, a rich class would
arise as probabilistic mixtures of such cdf’s, leading to the general form η(τ) =

∑K
k=1 λkF (τ | Ωk),

such that λk ≥ 0,
∑

k λk = 1 and F : [0, 1] → [0, 1] is strictly increasing for any parameters Ωk.
A convenient class of F ’s are the cdf’s of the two parameter Kumaraswamy distribution. This cdf is
F (x | a, b) = 1− (1− xa)b where x ∈ [0, 1] and a, b > 0. The Kumaraswamy distributions are a family
with behavior similar to the beta distribution but much simpler, especially in the context of simulation
since the cdf can be expressed in closed form. Through simulation, we explored that K = 1 and K = 2
offer great flexibility and a higher K can lead to identification issues. We call these models QAR1K1 and
QAR1K2, respectively. We conclude the model specification with the prior distribution of the parameters
a’s, b’s, and λ’s. We suggest to model the weights using the additive logistic normal transformation and
the parameters of the Kumaraswamy distribution with a weak Gaussian prior in the log scale.

Likelihood evaluation and model fitting. Following the ideas of TK2012, a valid joint specification
of QYt(τ | yt−1) for all τ ∈ (0, 1) uniquely defines the conditional response density for yt−1 ∈ [0, 1],

fYt
(yt | yt−1) =

1
d
dτQYt(τ | yt−1)

∣∣∣∣∣
τ=τyt−1

(yt)

, (1)

where τyt−1(yt) solves yt = yt−1η1(τ) + (1 − yt−1)η2(τ) in τ and is numerically approximated via a
one-dimensional rootfinder. Consequently, given y1, we can write a valid log-likelihood score in terms
of ut = τyt−1(yt), all of the observed data y = (y1, . . . , yT )

⊤ and the model parameters Ω as

ℓ(Ω | y) = −
T∑

t=2

log
{
yt−1η̇1(ut) + (1− yt−1)η̇2(ut)

}
. (2)

The rootfinder used to evaluate the log-likelihood function (2) is Brent’s method. We implement
an adaptive block-Metropolis sampler algorithm to obtain Markov chain Monte Carlo (MCMC) samples
from the posterior distribution of the parameters and the conditional quantile function.



Model adequacy and comparison. We offer two novel dimensionless metrics which assess the global
adequacy and comparative performance of the conditional quantile function arising under the model.
They are based on the posterior distribution of QYt(τ | yt−1). The first metric p̃v uses the probability
that an observation is less than each conditional quantile. The second metric R̄1 is a generalization of
R1(τ), the analog of R2 for the quantile loss function.

3. Joint spatial QAR model for spatio-temporal data
We focus on the analysis of spatial point-referenced time-series data where Yt(s) denotes the

observation for time t = 1, . . . , T at location s ∈ D, where D ⊂ Rr is the study region. The joint spatial
QAR model is given by

Yt(s) = θ0(Ut(s); s) + θ1(Ut(s); s)Yt−1(s), (3)

where the θ functions are quantile and spatially varying, and the vectors (Ut(s1), . . . , Ut(sn))
⊤ are as-

sumed to follow a spatial copula process.

Modeling spatial dependence. Spatially varying quantiles. For the spatially-varying coefficients,
we consider one cdf for each η(τ ; s). In fact, at location s, let assume ηj(τ ; s) = 1 − (1 − τaj(s))bj(s)

with parameters aj(s) and bj(s) (j = 1, 2). We introduce four independent GP’s for the a’s and
b’s on the log scale. In particular, we model log aj(s) ∼ GP (aj , σ

2
ajρ(s, s

′;ϕaj )) and log bj(s) ∼
GP (bj , σ

2
bj
ρ(s, s′;ϕbj )) where ρ(s, s′;ϕ)is an exponential correlation functions with decay ϕ.

The spatial copula process. With regard to the copula model for (3), we take the processes Ut(s)’s to
follow a Gaussian copula for each t, induced by a stationary spatial GP. In the spirit of [3], we define

Ut(s) = Φ(Zt(s)), Zt(s) = Wt(s) + ϵt(s), Wt(s) ∼ GP (0, γρ(s, s′;ϕ)), ϵt(s) ∼ IID N(0, 1− γ). (4)

The process Wt(s) captures spatial dependence while ϵt(s) is independent pure error. The parameter γ ∈
[0, 1] determines the proportion of spatial and independent variation. With this approach, the Gaussian
copula density has correlation matrix R ≡ γR(ϕ)+(1−γ)In where R(ϕ) is the n×n correlation matrix
induced by ρ(s, s′;ϕ).

Likelihood evaluation and spatial interpolation. We are interested in the likelihood under model (3)
and (4). It is convenient to first obtain the joint distribution for all data, y. By Sklar’s theorem, the joint
conditional density of y can be partitioned into a marginal part and a copula part. Subsequently, we find
the expression of the log-likelihood function for the spatial QAR, and after giving weakly informative
priors, inference proceeds in a similar way as in the univariate case. With the proposed model we
can interpolate conditional quantiles to any desired location in the study region given any proposed or
reference value for the previous day’s temperature at that location.

4. Application to Temperature Data
The analyses consider daily maximum temperature (◦C) data at n = 18 sites around the Comu-

nidad Autónoma de Aragón provided by the Agencia Estatal de Meteorología (AEMET) in northeastern
Spain. We use data at a daily scale in 2015, but we focus the analyses on the warm months from May 1
to September 30.

Illustratively, Figure 1 shows the posterior mean of the functions θ0 and θ1 in Zaragoza for the
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Figure 1: Posterior mean of (1st) θ0(τ), (2nd) θ1(τ), (3rd) quantile function QYt(τ | y) vs. τ ; and (4th)
density function fYt(x | y). y is the empirical τ -marginal quantile, τ = 0.1 (blue), 0.5 (black), 0.9 (red).

models QAR1K1 (dashed) and QAR1K2 (solid). The intercepts on the original scale can be recovered
as θ∗0(τ) = m(1 − η1(τ)) + Mη2(τ). Mainly, note that θ1 is nonmonotonic with smaller values in
the extremes, this means that the previous day’s temperature is less influential for extreme quantiles.
This characteristic in the persistence of temperature was observed in [1, 2]. It cannot be reproduced
by KX2006. Although higher K offers more flexibility, both curves offer similar results. Additionally,
Figure 1 shows the posterior mean of the conditional quantile functions QYt(τ | y) for three situations
where y is the empirical τ -marginal quantile for τ = 0.1, 0.5, 0.9. The figure also shows the posterior
mean of the conditional density function in (1) under the same conditions. The shape of the distribution
changes according to the value on which we condition.

The spatial QAR model is fitted to the n = 18 series jointly. The posterior mean of γ, the pro-
portion of spatial dependence in (4), is 0.95 with a 95% credible interval of (0.93, 0.97). This result
indicates very strong spatial dependence in the quantile levels. Results about spatial GP’s for the param-
eters of the Kumaraswamy cdf (not shown) suggest that the GP of a2(s) might be not necessary but the
spatial variability of a1(s) is higher and it could be related to distance to coast. We notice that b1(s) and
b2(s) show approximately negative spatial correlation against each other because b1(s) has the highest
values where b2(s) has the lowest.

5. Extensions and Future Work
The complete work also includes an approach for the QAR(p) case and a novel multivariate QAR

for multivariate time-series data using a copula process. A future direction will consider a proper im-
plementation of covariates in the joint QAR setting. Another interesting direction is to build a bivariate
spatial QAR model for daily maximum and minimum temperature.
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